Reading Group: Probability With Martingales Ch13

LEUNG Man Fung, Heman Summer 2020

Uniform integrability

Motivation

- Convergence in probability is easy to establish, e.g.
 - WLLN for independent RVs
 - Ergodic theorem for dependent RVs (discussed last semester in recursive TAVC)
 - Dominated convergence theorem
- Convergence in \mathcal{L}^p -norm is harder to establish on the other hand
- Uniform integrability is a necessary and sufficient condition to link them

An "absolute continuity" property

- Lemma 13.1.1
 - Suppose that $X\in \mathcal{L}^1=\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$
 - Then, given $\epsilon > 0$, $\exists \delta > 0$ s.t. for $F \in \mathcal{F}$, $P(F) < \delta \implies E(|X|;F) < \epsilon$
- \cdot Proof
 - If the conclusion is false, then, for some $\epsilon_0>0$, we can find $\{F_n\}$ consists of elements of ${\cal F}$ s.t.

$$P(F_n) < 2^{-n}, E(|X|;F_n) \geq \epsilon_0$$

- Construction of "contracting" events
- Let $H:=\limsup F_n$. Then BC1 shows that P(H)=0
- Yet reverse Fatou lemma shows that $E(|X|;H) \geq \limsup_{n o \infty} E(|X|;F_n) = \epsilon_0$
- Contradiction arises since $P(H)=0\implies E(|X|;H)=0$

An "absolute continuity" property

- Corollary 13.1.2
 - Suppose that $X \in \mathcal{L}^1$ and that $\epsilon > 0$
 - Then $\exists K \in [0,\infty)$ such that $E(|X|;|X|>K) < \epsilon$
- \cdot Proof
 - Let δ be as in lemma 13.1.1
 - Since $KP(|X|>K) \leq E(|X|)$, we can choose K such that $P(|X|>K) \leq \delta$
 - Application of lemma 13.1.1 yields the result

UI family

· A class ${\cal C}$ of RVs is called uniformly integrable (UI) if given $\epsilon>0$,

 $\exists K \in [0,\infty) ext{ s.t. } E(|X|;|X|>K) < \epsilon, orall X \in \mathcal{C}$

 $\cdot \;$ For such a class $\mathcal C$, we have (with K_1 relating to $\epsilon=1$) for every $X\in \mathcal C$,

$$egin{aligned} E(|X|) &= E(|X|;|X| > K_1) + E(|X|;|X| \leq K_1) \ &\leq 1 + K_1 \end{aligned}$$

- The first term comes from choice of K_1 and corollary 13.1.2
- The second term comes from idea of Markov's inequality
- This means that a UI family is bounded in \mathcal{L}^1 but the converse is not true
 - Counterexample: Take $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}[0, 1], \mathrm{Leb})$
 - Let $E_n = \left(0, rac{1}{n}
 ight)$ and $X_n = n I_{E_n}$
 - Then $E(|X_n|)=1, orall n$ so that $\{X_n\}$ is bounded in \mathcal{L}^1
 - However, for any K>0, we have for n>K, $E(|X_n|;|X_n|>K)=nP(E_n)=1$
 - This means $\{X_n\}$ is not UI. Here, $X_n o 0$ but $E(X_n)
 eq 0$

Two sufficient conditions for the UI property

- + First condition: boundedness in \mathcal{L}^p where p>1
 - Suppose that ${\mathcal C}$ is a class of RVs bounded in ${\mathcal L}^p$ for some p>1
 - Thus, for some $A \in [0,\infty)$, $E(|X|^p) < A, orall X \in \mathcal{C}$
 - Then ${\mathcal C}$ is UI
- \cdot Proof
 - If $v \geq K > 0$, then $v^{1-p} \leq K^{1-p} \implies v \leq K^{1-p} v^p$
 - Hence, for K>0 and $X\in \mathcal{C}$, we have

$$E(|X|;|X|>K) \leq K^{1-p}E(|X|^p;|X|>K) \leq K^{1-p}A$$

- The result follows from the fact that we can choose K based on the value of $\epsilon:=K^{1-p}A$
- Idea
 - Boundedness in \mathcal{L}^p for some p>1 implies boundedness in \mathcal{L}^1
 - Which is a property of UI family
 - While \mathcal{L}^p provides a "faster" convergence

Two sufficient conditions for the UI property

- Second condition: dominated by an integrable non-negative variable
 - Suppose that ${\mathcal C}$ is a class of RVs which is dominated by an integrable non-negative variable Y:

$$|X(\omega)| \leq Y(\omega), orall X \in \mathcal{C} ext{ and } E(Y) < \infty$$

- Then ${\mathcal C}$ is UI
- \cdot Proof
 - For K>0 and $X\in \mathcal{C}$, we have

```
E(|X|;|X|>K) \leq E(Y;Y>K) < \epsilon
```

- where the last inequality comes from corollary 13.1.2
- Remark
 - It is precisely this which makes dominated convergence theorem works for our $(\Omega, \mathcal{F}, \mathbb{P})$
 - An extension of dominated convergence theorem to the whole class ${\mathcal C}$

UI property of conditional expectation

- Theorem 13.4.1
 - Let $X \in \mathcal{L}^1$. Then the class $\{E(X|\mathcal{G}): \mathcal{G} ext{ a sub-}\sigma ext{-algebra of } \mathcal{F}\}$ is uniformly integrable
 - Formally, the definition of the class \mathcal{C} is $Y \in \mathcal{C}$ if and only if Y is a version of $E(X|\mathcal{G})$ for some sub- σ -algebra \mathcal{G} of \mathcal{F}
- \cdot Proof
 - Let $\epsilon > 0$ be given
 - By lemma 13.1.1, we can choose $\delta>0$ such that, for $F\in \mathcal{F}$, $P(F)<\delta\implies E(|X|;F)<\epsilon$
 - Choose K so that $K^{-1}E(|X|) < \delta$
 - Now let ${\mathcal G}$ be a sub- σ -algebra of ${\mathcal F}$ and let Y be any version of $E(X|{\mathcal G})$
 - By Jensen's inequality, $|Y| \leq E(|X||\mathcal{G})$ a.s. (absolute function is convex)
 - Hence $E(|Y|) \leq E(|X|)$ by tower property and $KP(|Y|>K) \leq E(|Y|) \leq E(|X|)$
 - By the choice of K, we now have $P(|Y|>K)<\delta$ from last inequality
 - But $\{|Y|>K\}\in \mathcal{G}$, so that $E(|Y|;|Y|\geq K)\leq E(|X|;|Y|\geq K)<\epsilon$ completes the proof
 - By $|Y| \leq E(|X||\mathcal{G})$, property of conditional expectation and lemma 13.1.1

Convergence of random variables

Convergence in probability

- · Definition
 - Let $\{X_n\}$ be a sequence of RVs and X be a RV
 - $\bar{}$ We say that $X_n \stackrel{p}{
 ightarrow} X$ if for every $\epsilon > 0$

$$\lim_{n o\infty} P(|X_n-X|>\epsilon) o 0$$

- Lemma 13.5.1: almost sure convergence implies convergence in probability
 - $\check{\ } X_n \stackrel{a.s.}{
 ightarrow} X \implies X_n \stackrel{p}{
 ightarrow} X$
- · Proof
 - Suppose that $X_n \stackrel{a.s.}{
 ightarrow} X$ and that $\epsilon > 0$
 - Then by reverse Fatou lemma for sets,

$$egin{aligned} 0 &= P(|X_n - X| > \epsilon, ext{ i.o.}) = P\left(\limsup \{|X_n - X| > \epsilon\}
ight) \ &\geq \limsup P(|X_n - X| > \epsilon) \end{aligned}$$

- The result is proved by non-negativity of probability and sandwich theorem

Bounded convergence theorem

- · Let $\{X_n\}$ be a sequence of RVs and X be a RV
- ' Suppose that $X_n \stackrel{p}{ o} X$ and that for some $K \in [0,\infty)$, we have $|X_n(\omega)| \leq K, orall n, orall \omega$
- $\cdot \;$ Then $E(|X_n-X|)
 ightarrow 0$

• Proof

- Let's check that $P(|X| \leq K) = 1$. By assumption, for $k \in \mathbb{N}$,

$$P(|X| > K + k^{-1}) \leq P(|X - X_n| > k^{-1}), orall n$$

$$\stackrel{p}{\rightarrow} X$$
 implies $P(|X| > K + k^{-1}) = 0$

- Hence $P(|X|>K)=P\left(\cup_kig\{|X|>K+k^{-1}ig\}
 ight)=0$
- Now let $\epsilon > 0$ be given
- Choose n_0 such that $P\left(|X_n-X|>rac{1}{3}\epsilon
 ight)<rac{\epsilon}{3K}$ when $n\geq n_0$
- Then, for $n\geq n_0$,

$$egin{aligned} E(|X_n-X|) &= E\left(|X_n-X|;|X_n-X| > rac{1}{3}\epsilon
ight) + E\left(|X_n-X|;|X_n-X| \leq rac{1}{3}\epsilon
ight) \ &\leq 2KP\left(|X_n-X| > rac{1}{3}\epsilon
ight) + rac{1}{3}\epsilon \leq \epsilon \end{aligned}$$

- Remark
 - This proof shows that convergence in probability is a natural concept (how?)

A necessary and sufficient condition for \mathcal{L}^1 convergence

- Theorem 13.7.1
 - Let $\{X_n\}$ be a sequence in \mathcal{L}^1 and let $X\in\mathcal{L}^1$
 - Then $X_n \stackrel{\mathcal{L}^1}{ o} X$, equivalently $E(|X_n-X|) o 0$, if and only if $X_n \stackrel{p}{ o} X$ and $\{X_n\}$ is UI
- Remarks
 - The "if" part is more useful since it improves dominated convergence theorem
 - This can be seen from 13.3 the second sufficient condition of UI
 - The "only if" part is less surprising
 - Convergence in $\mathcal{L}^p, p \geq 1$ implies convergence in probability

• Proof of "if" part

⁻ Suppose that $X_n \stackrel{p}{ o} X$ and $\{X_n\}$ is UI. For $K \in [0,\infty)$, define $arphi_K: \mathbb{R} o [-K,K]$ by

$$arphi_K(x) := egin{cases} K & ,x > K \ x & , |x| \leq K \ -K & ,x < -K \end{cases}$$

- Let $\epsilon > 0$ be given. By the UI property of $\{X_n\}$ and corollary 13.1.2, choose K so that

$$Eig[ert arphi_K(X_n) - X_nertig] < rac{\epsilon}{3}, orall n; Eig[ert arphi_K(X) - Xertig] < rac{\epsilon}{3}$$

- Note that $|arphi_K(x) - arphi_K(y)| \leq |x-y| \implies arphi_K(x) \stackrel{p}{ o} arphi_K(y)$ by taking probability

- Applying bounded convergence theorem, we can choose n_0 such that, for $n\geq n_0$,

$$Eig[ert arphi_K(X_n) - arphi_K(X)ertig] < rac{\epsilon}{3}$$

- Minkowski inequality shows that, for $n\geq n_0$,

$$Eig(|X_n-X|ig)=Eig[|X_n-arphi_K(X_n)+arphi_K(X)-X+arphi_K(X_n)-arphi_K(X)|ig]<\epsilon$$

- Proof of "only if" part
 - Suppose that $X_n o X$ in \mathcal{L}^1 . Let $\epsilon > 0$ be given
 - Choose N such that $n \geq N \implies E(|X_n X|) < rac{\epsilon}{2}$
 - By lemma 13.1.1, we can choose $\delta > 0$ such that whenever $P(F) < \delta$, we have

$$E(|X_n|;F)<\epsilon, 1\leq n\leq N; \quad E(|X|;F)<rac{\epsilon}{2}$$

- The second inequality probably comes from choice of N instead of lemma 13.1.1

- Since $\{X_n\}$ is bounded in \mathcal{L}^1 , we can choose K such that $K^{-1} \sup_r E(|X_r|) < \delta$
- Then for $n\geq N$, we have $P(|X_n|>K)<\delta$ (by idea in Markov inequality) and

$$E(|X_n|;|X_n|>K)\leq E(|X|;|X_n|>K)+E(|X-X_n|)<\epsilon$$

- By lemma 13.1.1 and choice of ${\cal N}$
- For $n \leq N$, we have $P(|X_n| > K) < \delta$ and $E(|X_n|; |X_n| > K) < \epsilon$ by choice of δ
- Hence $\{X_n\}$ is a UI family
- $\bar{}$ Since $\epsilon P(|X_n-X|>\epsilon)\leq E(|X_n-X|) o 0$, we have $X_n\stackrel{p}{ o} X$

Concluding remarks

Comments

- UI allows us to establish stronger \mathcal{L}^1 convergence from weaker convergence in probability
 - This is appealing as there are more standard devices for convergence in probability
- \cdot UI appears naturally in conditional expectation, which is central to martingale property
 - Thus UI martingale is studied in next chapter