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Uniform integrability



Motivation

Convergence in probability is easy to establish, e.g.

Convergence in -norm is harder to establish on the other hand

Uniform integrability is a necessary and sufficient condition to link them

·

WLLN for independent RVs

Ergodic theorem for dependent RVs (discussed last semester in recursive TAVC)

Dominated convergence theorem

-

-

-

· Lp

·

3/18



An “absolute continuity” property

Lemma 13.1.1

Proof

·

Suppose that 

Then, given ,  s.t. for , 

- X ∈ = (Ω, F , P)L1 L1

- ϵ > 0 ∃δ > 0 F ∈ F P(F) < δ ⟹ E(|X|; F) < ϵ

·

If the conclusion is false, then, for some , we can find  consists of elements of  s.t.

Let . Then BC1 shows that 

Yet reverse Fatou lemma shows that 

Contradiction arises since 

- > 0ϵ0 { }Fn F

P( ) < , E(|X|; ) ≥Fn 2−n Fn ϵ0

Construction of “contracting” events-

- H := lim sup Fn P(H) = 0

- E(|X|; H) ≥ E(|X|; ) =lim supn→∞ Fn ϵ0

- P(H) = 0 ⟹ E(|X|; H) = 0
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An “absolute continuity” property

Corollary 13.1.2

Proof

·

Suppose that  and that 

Then  such that 

- X ∈ L1 ϵ > 0
- ∃K ∈ [0, ∞) E(|X|; |X| > K) < ϵ

·

Let  be as in lemma 13.1.1

Since , we can choose  such that 

Application of lemma 13.1.1 yields the result

- δ

- KP(|X| > K) ≤ E(|X|) K P(|X| > K) ≤ δ

-
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UI family

A class  of RVs is called uniformly integrable (UI) if given ,

For such a class , we have (with  relating to ) for every ,

This means that a UI family is bounded in  but the converse is not true

· C ϵ > 0

∃K ∈ [0, ∞) s.t. E(|X|; |X| > K) < ϵ, ∀X ∈ C

· C K1 ϵ = 1 X ∈ C

E(|X|) = E(|X|; |X| > ) + E(|X|; |X| ≤ )K1 K1

≤ 1 + K1

The first term comes from choice of  and corollary 13.1.2

The second term comes from idea of Markov’s inequality

- K1

-

· L1

Counterexample: Take 

Let  and 

Then  so that  is bounded in 

However, for any , we have for , 

This means  is not UI. Here,  but 

- (Ω, F , P) = ([0, 1], B[0, 1], Leb)

- = (0, )En
1
n

= nXn IEn

- E(| |) = 1, ∀nXn { }Xn L1

- K > 0 n > K E(| |; | | > K) = nP( ) = 1Xn Xn En

- { }Xn → 0Xn E( ) ↛ 0Xn
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Two sufficient conditions for the UI property

First condition: boundedness in  where 

Proof

Idea

· Lp p > 1

Suppose that  is a class of RVs bounded in  for some 

Thus, for some , 

Then  is UI

- C Lp p > 1
- A ∈ [0, ∞) E(|X ) < A, ∀X ∈ C|p

- C

·

If , then 

Hence, for  and , we have

The result follows from the fact that we can choose  based on the value of 

- v ≥ K > 0 ≤ ⟹ v ≤v1−p K1−p K1−pvp

- K > 0 X ∈ C

E(|X|; |X| > K) ≤ E(|X ; |X| > K) ≤ AK1−p |p K1−p

- K ϵ := AK1−p

·

Boundedness in  for some  implies boundedness in - Lp p > 1 L1

Which is a property of UI family

While  provides a “faster” convergence

-

- Lp
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Two sufficient conditions for the UI property

Second condition: dominated by an integrable non-negative variable

Proof

Remark

·

Suppose that  is a class of RVs which is dominated by an integrable non-negative variable :

Then  is UI

- C Y

|X(ω)| ≤ Y (ω), ∀X ∈ C and E(Y ) < ∞

- C

·

For  and , we have

where the last inequality comes from corollary 13.1.2

- K > 0 X ∈ C

E(|X|; |X| > K) ≤ E(Y ; Y > K) < ϵ

-

·

It is precisely this which makes dominated convergence theorem works for our 

An extension of dominated convergence theorem to the whole class 

- (Ω, F , P)

- C
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UI property of conditional expectation

Theorem 13.4.1

Proof

·

Let . Then the class  is uniformly integrable

Formally, the definition of the class  is  if and only if  is a version of  for some
sub- -algebra  of 

- X ∈ L1 {E(X|G) : G a sub-σ-algebra of F}

- C Y ∈ C Y E(X|G)
σ G F

·

Let  be given

By lemma 13.1.1, we can choose  such that, for , 

Choose  so that 

Now let  be a sub- -algebra of  and let  be any version of 

By Jensen’s inequality,  a.s. (absolute function is convex)

Hence  by tower property and 

By the choice of , we now have  from last inequality

But , so that  completes the proof

- ϵ > 0
- δ > 0 F ∈ F P(F) < δ ⟹ E(|X|; F) < ϵ

- K E(|X|) < δK−1

- G σ F Y E(X|G)

- |Y | ≤ E(|X||G)

- E(|Y |) ≤ E(|X|) KP(|Y | > K) ≤ E(|Y |) ≤ E(|X|)

- K P(|Y | > K) < δ

- {|Y | > K} ∈ G E(|Y |; |Y | ≥ K) ≤ E(|X|; |Y | ≥ K) < ϵ

By , property of conditional expectation and lemma 13.1.1- |Y | ≤ E(|X||G)
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Convergence of random variables



Convergence in probability

Definition

Lemma 13.5.1: almost sure convergence implies convergence in probability

Proof

·

Let  be a sequence of RVs and  be a RV

We say that  if for every 

- { }Xn X

- XXn →
p

ϵ > 0

P(| − X| > ϵ) → 0lim
n→∞

Xn

·

- X ⟹ XXn →
a.s.

Xn →
p

·

Suppose that  and that 

Then by reverse Fatou lemma for sets,

The result is proved by non-negativity of probability and sandwich theorem

- XXn →
a.s.

ϵ > 0
-

0 = P(| − X| > ϵ,  i.o.) = P (lim sup{| − X| > ϵ})Xn Xn

≥ lim sup P(| − X| > ϵ)Xn

-
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Bounded convergence theorem

Let  be a sequence of RVs and  be a RV

Suppose that  and that for some , we have 

Then 

· { }Xn X

· XXn →
p

K ∈ [0, ∞) | (ω)| ≤ K, ∀n, ∀ωXn

· E(| − X|) → 0Xn
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Proof

Remark

·

Let’s check that . By assumption, for ,

 implies 

Hence 

Now let  be given

Choose  such that  when 

Then, for ,

- P(|X| ≤ K) = 1 k ∈ N

P(|X| > K + ) ≤ P(|X − | > ), ∀nk−1 Xn k−1

- XXn →
p

P(|X| > K + ) = 0k−1

- P(|X| > K) = P ( {|X| > K + }) = 0∪k k−1

- ϵ > 0
- n0 P (| − X| > ϵ) <Xn

1
3

ϵ
3K

n ≥ n0

- n ≥ n0

E(| − X|)Xn = E (| − X|; | − X| > ϵ) + E (| − X|; | − X| ≤ ϵ)Xn Xn
1
3

Xn Xn
1
3

≤ 2KP (| − X| > ϵ) + ϵ ≤ ϵXn
1
3

1
3

·

This proof shows that convergence in probability is a natural concept (how?)-
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A necessary and sufficient condition for 
convergence

L1

Theorem 13.7.1

Remarks

·

Let  be a sequence in  and let 

Then , equivalently , if and only if  and  is UI

- { }Xn L1 X ∈ L1

-
XXn →

L1

E(| − X|) → 0Xn XXn →
p

{ }Xn

·

The “if” part is more useful since it improves dominated convergence theorem

The “only if” part is less surprising

-

This can be seen from 13.3 the second sufficient condition of UI-

-

Convergence in  implies convergence in probability- , p ≥ 1Lp
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Proof of “if” part·

Suppose that  and  is UI. For , define  by

Let  be given. By the UI property of  and corollary 13.1.2, choose  so that

Note that  by taking probability

Applying bounded convergence theorem, we can choose  such that, for ,

Minkowski inequality shows that, for  ,

- XXn →
p

{ }Xn K ∈ [0, ∞) : R → [−K, K]φK

(x) :=φK

⎧
⎩⎨
⎪
⎪

K

x

−K

, x > K

, |x| ≤ K

, x < −K

- ϵ > 0 { }Xn K

E[| ( ) − |] < , ∀n; E[| (X) − X|] <φK Xn Xn
ϵ

3
φK

ϵ

3

- | (x) − (y)| ≤ |x − y| ⟹ (x) (y)φK φK φK →
p

φK

- n0 n ≥ n0

E[| ( ) − (X)|] <φK Xn φK
ϵ

3

- n ≥ n0

E(| − X|) = E[| − ( ) + (X) − X + ( ) − (X)|] < ϵXn Xn φK Xn φK φK Xn φK
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Proof of “only if” part·

Suppose that  in . Let  be given

Choose  such that 

By lemma 13.1.1, we can choose  such that whenever , we have

Since  is bounded in , we can choose  such that 

Then for , we have  (by idea in Markov inequality) and

For , we have  and  by choice of 

Hence  is a UI family

Since , we have 

- → XXn L1 ϵ > 0
- N n ≥ N ⟹ E(| − X|) <Xn

ϵ
2

- δ > 0 P(F) < δ

E(| |; F) < ϵ, 1 ≤ n ≤ N ; E(|X|; F) <Xn
ϵ

2

The second inequality probably comes from choice of  instead of lemma 13.1.1- N

- { }Xn L1 K E(| |) < δK−1 supr Xr

- n ≥ N P(| | > K) < δXn

E(| |; | | > K) ≤ E(|X|; | | > K) + E(|X − |) < ϵXn Xn Xn Xn

By lemma 13.1.1 and choice of - N

- n ≤ N P(| | > K) < δXn E(| |; | | > K) < ϵXn Xn δ

- { }Xn

- ϵP(| − X| > ϵ) ≤ E(| − X|) → 0Xn Xn XXn →
p
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Concluding remarks



Comments

UI allows us to establish stronger  convergence from weaker convergence in probability

UI appears naturally in conditional expectation, which is central to martingale property

· L1

This is appealing as there are more standard devices for convergence in probability-

·

Thus UI martingale is studied in next chapter-
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