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Uniform integrability



Motivation

- Convergence in probability is easy to establish, e.g.
- WLLN for independent RVs
- Ergodic theorem for dependent RVs (discussed last semester in recursive TAVC)
- Dominated convergence theorem

- Convergence in £P-norm is harder to establish on the other hand

- Uniform integrability is a necessary and sufficient condition to link them
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An “absolute continuity” property

- Lemma 13.1.1
- Supposethat X € £' = £1(Q, F,P)
- Then, givene > 0,35 > 0st.for F € F, P(F) <d = E(|X|;F) <e

- Proof

- If the conclusion is false, then, for some €y > 0, we can find { F}, } consists of elements of F s.t.
P(F,) <2 " E(|X|; F,) > €

- Construction of “contracting” events
- Let H := limsup F;, . Then BC1 shows that P(H) = 0
- Yet reverse Fatou lemma shows that E(| X |; H) > limsup,, .., E(|X|; F,) = €
- Contradiction arises since P(H) =0 = E(|X|;H) =0
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An “absolute continuity” property

- Corollary 13.1.2

- Suppose that X € £ and thate > 0

- Then dK € [0,00) suchthat E(| X|; | X| > K) <€
- Proof

- Letd be asinlemma 13.1.1

- Since KP(|X| > K) < E(|X]), we can choose K such that P(|X| > K) < ¢

- Application of lemma 13.1.1 yields the result
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Ul family

- Aclass C of RVs is called uniformly integrable (Ul) if given € > 0,
AK € [0,00) s.t. E(|X];|X| > K) <e,VX €C
- For such a class C, we have (with K relatingto e = 1) for every X € C,

E(|X|) = E(|X);|X| > K1) + E(|X|; | X| < K1)
<1+ K;

- The first term comes from choice of K and corollary 13.1.2

- The second term comes from idea of Markov's inequality

* This means that a Ul family is bounded in L' but the converse is not true
- Counterexample: Take (€2, F,P) = (|0, 1], B[0, 1], Leb)
Let B, = (O, %) and X, = nlg,
Then E(|X,,|) = 1,Vn so that {X,,} is bounded in £
However, for any K > 0, we have forn > K, E(|X,|; | X,| > K) =nP(E,) =1
This means { X, } is not Ul. Here, X;, — O but E(X,,) - 0
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Two sufficient conditions for the Ul property

- First condition: boundedness in £P wherep > 1
- Suppose that Cis a class of RVs bounded in L? for somep > 1
- Thus, forsome A € [0,00), E(|X|’) < A,vX € C
- Then Cis Ul
- Proof
- fo>K >0,thenv!? < K'P — v < K1 PP
- Hence, for K > 0 and X € C, we have

E(|X];|X| > K) <K' PE(|X];|X| > K) < K'PA

- The result follows from the fact that we can choose K based on the value of € := K1 P4
- ldea
- Boundedness in L? for some p > 1 implies boundedness in Ll
- Which is a property of Ul family

- While L? provides a “faster” convergence
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Two sufficient conditions for the Ul property

- Second condition: dominated by an integrable non-negative variable

- Suppose that C is a class of RVs which is dominated by an integrable non-negative variable Y:

| X(w)] <Y (w),VX € Cand E(Y) < o0

- Then Cis Ul
- Proof
- For K > 0 and X € C, we have

E(|X|;|X|>K)<EY;Y >K)<e

- where the last inequality comes from corollary 13.1.2
- Remark

- Itis precisely this which makes dominated convergence theorem works for our (2, F, P)

- An extension of dominated convergence theorem to the whole class C
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Ul property of conditional expectation

+ Theorem 13.4.1
- Let X € L' Then the class {E(X|G) : G a sub-o-algebra of F} is uniformly integrable

- Formally, the definition of the class Cis Y € Cif and only if Y is a version of E(X|G) for some
sub-o-algebra G of F

+ Proof
- Lete > 0 be given
- By lemma 13.1.1, we can choose § > 0 such that, for F € F, P(F) <§ — E(|X|;F) <e

- Choose K sothat K 1E(|X]) < §

- Now let G be a sub-o-algebra of F and let Y be any version of E(X|G)

- By Jensen's inequality, |Y| < E(|X||G) a.s. (absolute function is convex)

- Hence E(|Y]) < E(|X|) by tower property and K P(|Y| > K) < E(|Y]) < E(|X))

- By the choice of K, we now have P(]Y| > K) < ¢ from last inequality

- But{|Y| > K} € G,sothat E(|Y|;|Y| > K) < E(|X|;|Y| > K) < € completes the proof
- By |Y| < E(|X]|G), property of conditional expectation and lemma 13.1.1
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Convergence of random variables



Convergence in probability

- Definition
- Let { X, } be a sequence of RVs and X be a RV

] p
We say that X,, — X if foreverye > 0

lim P(| X, — X|>¢)— 0

n—0o0
- Lemma 13.5.1: almost sure convergence implies convergence in probability
- a.s. p
X,—-X = X, — X
- Proof

" Suppose that X,, — X and that e > 0

- Then by reverse Fatou lemma for sets,

0=P(|X,, — X| > ¢, i.0.) = P (limsup{|X,, — X| > €})
> limsup P(| X, — X| > ¢)

- Theresultis proved by non-negativity of probability and sandwich theorem
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Bounded convergence theorem

- Let { X, } be a sequence of RVs and X be a RV

" Suppose that X, % X and that for some K € 0, 00), we have | X, (w)| < K, Vn, Vw
+ Then E(| X, — X|) — 0
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- Proof

- Let's check that P(|X| < K) = 1. By assumption, for k € N,
P(|X|>K+k 1) <P(|X-X,|>k"),vn

" X, & Ximplies P(|X| > K + k1) =0

- Hence P(|X| > K) =P (U {|X| > K+k'}) =0

- Now let € > 0 be given

- Choose ng such that P (|Xn — X| > %e) < 3% Whenn > ng

- Then, forn > nyg,

1
B, — X)) = B (1%, ~ XX, - X1 > ge) + B (1%, — X X, - X < ge

1 1
§2KP(]Xn—X\ >§e) —I—gege

- Remark

- This proof shows that convergence in probability is a natural concept (how?)

1

)
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A necessary and sufficient condition for ,!
convergence

- Theorem 13.7.1
- Let {X,} be asequencein £ and let X € £

" Then X, i X, equivalently E(|X,, — X|) — 0, ifand only if X, % X and {X,}isul
- Remarks
- The"if” part is more useful since it improves dominated convergence theorem
- This can be seen from 13.3 the second sufficient condition of Ul
- The“only if” part is less surprising

- Convergence in £LP,p > 1 implies convergence in probability
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- Proof of “if” part

" Suppose that X, % X and {X,}isUlFor K € |0,00), define pg : R — |[—K, K] by

K ,r > K
¢U((w)::: L 7|aﬂ < K
—K ,r<-K

Let € > 0 be given. By the Ul property of { X, } and corollary 13.1.2, choose K so that

E|lex(X,) — Xa|] < g,\v’n;EUgoK(X) X[ < %

" Notethat |px(z) — v (y)| < |z —y| = ¢r(x) 5 ¢K (y) by taking probability

Applying bounded convergence theorem, we can choose 1y such that, forn > ny,

€

Bllox(X,) - ox(X)] <

Minkowski inequality shows that, for n > ny ,

E(|Xn — X|) = E[| X5 — ok (Xn) + o (X) — X + 0 (Xn) — ox(X)]] <e
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- Proof of “only if” part

Suppose that X,, — X in £!. Lete > 0 be given
Choose N suchthatn > N = E(|X, — X|) < 5

By lemma 13.1.1, we can choose § > 0 such that whenever P(F') < 4, we have

B(IXa;F) <e,1<n<N; B(XLF)<

- The second inequality probably comes from choice of IV instead of lemma 13.1.1
since {X,, } is bounded in £*, we can choose K such that K ! sup, E(|X,|) < §
Then for n > N, we have P(

X,| > K) < 6 (by idea in Markov inequality) and
E(|Xn|; | Xn| > K) < E(|X]; | Xa| > K) + E(|X — Xa|) <e€

- By lemma 13.1.1 and choice of N
Forn < N,wehave P(|X,,| > K) < § and E(|X,|; | X,| > K) < € by choice of
Hence { X, } is a Ul family

Since e P(|X,, — X| > €¢) < E(|X,, — X|) — 0, we have X, 5 X

16/18



Concluding remarks



Comments

Ul allows us to establish stronger Ll convergence from weaker convergence in probability
- This is appealing as there are more standard devices for convergence in probability
Ul appears naturally in conditional expectation, which is central to martingale property

- Thus Ul martingale is studied in next chapter
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